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In this paper we examine numerically the Gallavotti-Cohen fluctuation formula for phase-space contraction
rate and entropy production rate fluctuations in the Nosé-Hoover thermostated periodic Lorentz gas. Our results
indicate that while the phase-space contraction rate fluctuations violate the fluctuation formula near equilibrium
states, the entropy production rate fluctuations obey this formula near and far from equilibrium states as well.
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. INTRODUCTION 1 TI(x
_ lim —InA:x. (1)
In recent years a large number of papers focused on vari- roo T 1(=X)

ous fluctuation formulagFF9s with both theoretical and nu-
merical tools, and today, these seem to be one of the mo
interesting results in the field of statistical physics of non-
equilibrium system§1]. This behavior was observed numeri-
cally in a system of thermostated fluid particles undergoin
shear flow[2]. It was an important property of the FF that it

seemed to be valid for large external forcings as @]l . : )
therefore it was considered that it could shed some light o%;ﬁ;ma%ws\?;lfﬁlhiesnti:joeprﬁi?;ogéjgg%noiiﬁt?iﬁt;gg/e%%an

Fm. Consequenty. signiicant theoretcal effots have beed"ld PSCR and EPR fluctuations can have difrent POFs as,
: d Y, SIg .g., in the case of Nosé-Hoover thermostated systemes

made to find a common property behind the observed FF an ec. I). The theoretical methods using the Sinai-Ruelle-

these efforts resulted in various fluctuation theordfiEs): o
the Gallavotti-Cohen approach built on the chaotic hypoth-Bowen(SRB) measurg2,4] to calculate the probabilities of

i i L trajectory segments predict that the quantity obeying the FF
I(?IJS[[??’St]HéhETE;gnsstoscizg(tai(S: ts@i?é?ﬁ@l(gti:emmﬁgfeﬁcg:‘ is the PSCR and further nontrivial theoretical efforts are
Maes established on the Gibbs Propétty], and the FT for Ff%ded to establish similar results for the EPR fluctuations
open system$12]. The Gallavotti-Cohen FT/FF serves as fhe main purpose of examining the Nosé-Hoo@dH)
the basis of the numerical investigations presented in thiﬁwermostated PLG is to investigate which of the above-
paper.

. . mentioned physical quantities obey the FF in a system,
All qf the applied theor(_etlcal methods sh_ared the PmpertXNhere the corresponding PDFs are not identical. In addition
of putting extra presumptions on the physical systéies,

chaoticity, stochasticifythat could not be proved priori. o this, checking the NH thermostated PLG numerically

A . against the FF is in itself an important task, given that the
Thls_ situation naturally raised the_need to study the FF NUNH thermostat is one of the two generally used dynamical
merically and compare the numerical results to the theoreti;

cal predictions. Up to now several physical models hav thermost_ats; th_e transport properties of this mo_del have been
been investiga‘éed numerically, such as the two-dimension cgntly mvesngated if18]. In Sec. Il we descnbg the ex-
(2D) reversibly damped quidé?y], the chains of weaKly in- mln_ed model; in Sec. lll we present our pumencal results;
teracting cat map$§l4], the Fermi-Ulam-Pasta chairi3], and in Sec. IV we summarize our conclusions.
and the periodic Lorentz Ga@PLG) thermostated by the
Gaussian isokineti¢GIK) thermostaf15,16]. Il. THE SYSTEM

The FF is a symmetry property of the probability density
function (PDP of a dynamically measured quantity con-
necting the probabilities of measuring values with equal
magnitudes but opposite signs. More preciselyadt) de-
note the quantity averaged over a time interval of length
centered around time w,(t):1/Tf1’3,2p(t+t’)dt’. Consider-
ing it as a stochastic variable its statistical properties in a
steady state can be characterized by the PD#&). The FF
states that the PDH (x) has the following property:

In other words, for large enoughvalues the probability of
5toserving -, IS exponentially smaller than the probability
of observing, .

In [15,16 the examined physical quantity(t) was the
gphase—space contraction rdfeSCR, which due to this spe-
cial property of the applied GIK thermostat was equal to the

One of the most investigated models suitable for studying
transport phenomena is the field-driven thermostated peri-
odic Lorentz Gas. This model consists of a charged particle
subjected to external electric field and moving in the lattice
of elastic scatterers. Due to the applied electric field, one
must use a thermostating mechanism to achieve a steady
state in the system; such a tool is a dynamical thermostat.
Two types of dynamical thermostats have been applied to the
PLG up to now: the GIK thermostat producing microcanoni-
cal distribution[19] and the Nosé-Hoover thermostat produc-
ing canonical distribution in equilibriuriil8,20.

*Electronic address: dolowsch@szerenke.elte.hu We present the equations of motion of the two-
"Electronic address: kz@garfield.elte.hu dimensional NH thermostated PLG in dimensionless form:
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FIG. 1. The probability density functioB (x) of the averaged FIG. 2. The probability density functio& ,(x) of the averaged
phase-space contraction rate fluctuationsn a configuration close entropy production rate fluctuatior®s in a configuration close to
to equilibrium[E=(0.1,0.3]. equilibrium[E=(0.1,0.2].

mass and electric charge are measured in units of the partpposed to the case of the GIK thermostated PLG.
cle’s masan and chargel and the unit length is chosen to be
the radius of the scatterefR=1). Let q=(q;,q,) denote the
position andp=(p;,p,) the momentum of the particle. Then
the phase-space vector of the systeri#q, p, {), wherel The objective of the numerical simulation is to measure
is the state variable of the thermal reservoir. Between twdhe PDFsX (x) and E (x) of the averaged quantities(t)
subsequent collisions the state of the system is evolvedl/r Z’f,zg’(t’)dt’ and &(t)=1/7 Z’f,z[p(t+t’)-E/T]dt’, and
smoothly by the differential equation check the validity of the FF for them. In order to perform this
- task we should evolve the state of the sysiémlong a long
a=p trajectory, which requires the algorithm to be very efficient.
. This need motivated us to implement awent driven algo-
P=E-{p, rithm that generates and handles events, such as the collision
9 of the particle with a scatterer and the replacement of the
7= (p__l), (2)  particle from one simulation cell into the other. The most
2T sensitive issue when applying such an algorithm is to deter-
mine the point of time when a specific event occurs; in com-

Ill. NUMERICAL RESULTS

7'rzesp

and is transformed abruptly at every elastic collision. In this

cqualon is e exteral lecticfels he response 21 SHorEE 1S PO o our eslion deecton
time of the reservoir, and is the temperature satisfying Y

(P)=2T of the patrticle is not upper bounded, we could not have cho-

: sen the simplest such method, the so-called naive algorithm,
Rhich could have been applied in the case of the GIK ther-
mostat. Instead of this we have applied the method of build-
ing the time estimation into the Runge-Kutta integrator,
fhich is used in simulating particle laden flows and coupled
ggrticle—field systemsgsee Ref[21]).

The PDFs2 (x) and E (x) were constructed by periodi-
cally computing the quantityr(t) and £(t) along a long
particle trajectory and making a histogram of the computed
o(t) = - divI(t) = {(t). (3)  data. In building the histogram we have used overlapping
and nonoverlapping windows techniques as well, but have
not found any relevant differences between them concerning
the results of this paper. Throughout the presented numerical
JO-E pt)-E experiments we have used tiie1.0 and=1.0 values,
e = T (4) however we have tested several other configurations as well.

We have simulateti=10" long particle trajectories resulting
whereT is the kinetic temperature. We note that this quantityin approximately 2< 1(P collisions with the scatterers.
is identical to the dissipation function of the Evans-Searles Figures 1-4 show the functional form of the PDEgx)
theorem[1]. It can be shown that in this modéb)=(¢),  and=.(x) for small and large external fields. Examining the
however, the identityr(t) =£(t) does not hold at all times, as figures one can make the following interesting observations:

In the simulations presented in this paper we have used
square latticeof circular scatterers, however, we have inves-
tigated numerically other lattices as we#.g., triangulay,
but have not found any relevant differences concerning th
results presented in Sec. .

Energy dissipation can be measured by the phase-spa
contraction rater and can be computed by taking the diver-
gence of the right-hand side of E@) as

The entropy production rat&can be formally defined by the
expression of irreversible thermodynamics

&t =
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FIG. 3. The probability density functioB (x) of the averaged FIG. 5. The quantityp?(x) for the phase-space contraction rate

phase-space contraction rate fluctuatiensin a configuration far  in a configuration close to equilibriuffE=(0.1,0.2].
from equilibrium[E=(0.8,1.6].

1 Ex

Ey) = =
(1) For low |E| values(close to equilibrium in Figs. 1 DIx) = TInE (%)’ (6)
and 2 the PDE (x) seems to be more symmetric than the 7
PDF Z (X). which are shown on Figs. 5-8. With these quantities (Ej.

(2) For low |E| values in Figs. 1 and 2 the PDE,(x)  reads as lim..D7(x)=x and lim,_.D}(x)=x. Examining
seems strictly narrower thaB (x); indeed in the|E|—0  Figs. 5-8, one can conclude that
limit = ,(x) should converge to a Diradé function[&,(t)=0], (1) for small external forcings and for numerically avail-
opposed tar, that can fluctuate even in equilibrium. able 7 values thes, fluctuations seem to violate the FFig.

(3) For high  values in Figs. 1-4 the curves seem to be5); this observation is supported by the fact that any symmet-
indistinguishable from a Gaussian; indeed fitting a GaussiafiC function substituted in Eq5) yields zero, and due to the
onto the measured values vyields an excellent visualime-reversing symmetry of Eq2) the PDFX (x) is ex-
agreement. pected to be close to a symmetric function for small external

With the measured values &,(x) and Z,(x) one can forcings(see Ref[22]).
check the FF in this model. In order to visualize the FF we (2) Theé, fluctuations seem to obey the FF both for small
may introduce the quantities and large external forcings.

(3) As the external forcing grows, the, fluctuations
seem to obey the FF for largevalues(Fig. 7) similarly to &,
1 3% fluctuations.
DI(x)==In———, (5) We note that we have examined several other configura-
T 2(=X) tions and have found no significant qualitative differences in
the observed behavior of the PDFs.
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FIG. 4. The probability density functiok .(x) of the averaged
entropy production rate fluctuatiords in a configuration far from FIG. 6. The quantit}Df(x) for the entropy production rate in a
equilibrium[E=(0.8,1.6]. configuration close to equilibriufE=(0.1,0.3].
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FIG. 7. The quantityD?(x) for the phase-space contraction rate ~ FIG. 8. The quantityDi(x) for the entropy production rate in a
in a configuration far from equilibriurhE=(0.8,1.9]. configuration far from equilibriuniE=(0.8,1.6].

IV. CONCLUSION periments. A direct consequence of our result is that the

) i . phase-space contraction rate and entropy production rate
In this paper we have presented numerical evidence showsannot be treated as interchangeable quantities in fluctuation

ing that the phase-space contraction rate fluctuations violatgmylas, therefore statements regarding the applicability of
the fluctuation formuldEq. (1)] in or close to equilibriumin e FF for various models should always clarify which fluc-
the Noseé-Hoover thermostated periodic Lorentz gas. This oby,ations they refer to.

servation is completely in line with the theoretical predic-
tions of Evanset al, in Ref.[22].

On the other hand, we also demonstrated that the entropy
production rate fluctuations satisfy the fluctuation formula, The authors are grateful to Rainer Klages and Tamas Tél
which is by no means trivial. It should also be noted thatfor fruitful discussions and careful reading of the manuscript.
from the physical point of view, the entropy production rate This work was supported by the Hungarian Academy of Sci-
is the more relevant quantity due to its relation to thermody-ences and by the Hungarian Scientific Research Foundation
namics and the availability for measurement in physical ex{Grant No. OTKA T032981L
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