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In this paper we examine numerically the Gallavotti-Cohen fluctuation formula for phase-space contraction
rate and entropy production rate fluctuations in the Nosé-Hoover thermostated periodic Lorentz gas. Our results
indicate that while the phase-space contraction rate fluctuations violate the fluctuation formula near equilibrium
states, the entropy production rate fluctuations obey this formula near and far from equilibrium states as well.
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I. INTRODUCTION

In recent years a large number of papers focused on vari-
ous fluctuation formulassFFsd with both theoretical and nu-
merical tools, and today, these seem to be one of the most
interesting results in the field of statistical physics of non-
equilibrium systemsf1g. This behavior was observed numeri-
cally in a system of thermostated fluid particles undergoing
shear flowf2g. It was an important property of the FF that it
seemed to be valid for large external forcings as wellf3g,
therefore it was considered that it could shed some light on
the thermodynamical behavior of systems far from equilib-
rium. Consequently, significant theoretical efforts have been
made to find a common property behind the observed FF and
these efforts resulted in various fluctuation theoremssFTsd:
the Gallavotti-Cohen approach built on the chaotic hypoth-
esisf4,5g, the Evans-Searles theoremsf6g, deterministic local
FT f7g, the FT for stochastic systemsf8–10g, the theorem of
Maes established on the Gibbs Propertyf11g, and the FT for
open systemsf12g. The Gallavotti-Cohen FT/FF serves as
the basis of the numerical investigations presented in this
paper.

All of the applied theoretical methods shared the property
of putting extra presumptions on the physical systemssi.e.,
chaoticity, stochasticityd that could not be proveda priori.
This situation naturally raised the need to study the FF nu-
merically and compare the numerical results to the theoreti-
cal predictions. Up to now several physical models have
been investigated numerically, such as the two-dimensional
s2Dd reversibly damped fluidsf7g, the chains of weakly in-
teracting cat mapsf14g, the Fermi-Ulam-Pasta chainf13g,
and the periodic Lorentz GassPLGd thermostated by the
Gaussian isokineticsGIKd thermostatf15,16g.

The FF is a symmetry property of the probability density
function sPDFd of a dynamically measured quantityp con-
necting the probabilities of measuringp values with equal
magnitudes but opposite signs. More precisely, letptstd de-
note the quantityp averaged over a time interval of lengtht
centered around timet :ptstd=1/te−t/2

t/2 pst+ t8ddt8. Consider-
ing it as a stochastic variablex, its statistical properties in a
steady state can be characterized by the PDFPtsxd. The FF
states that the PDFPtsxd has the following property:

lim
t→`

1

t
ln

Ptsxd
Pts− xd

= x. s1d

In other words, for large enought values the probability of
observing −pt is exponentially smaller than the probability
of observingpt .

In f15,16g the examined physical quantityptstd was the
phase-space contraction ratesPSCRd, which due to this spe-
cial property of the applied GIK thermostat was equal to the
thermodynamical entropy production ratesEPRd at any given
time. However, this identity does not hold in generalf17g,
and PSCR and EPR fluctuations can have different PDFs as,
e.g., in the case of Nosé-Hoover thermostated systemsssee
Sec. IId. The theoretical methods using the Sinai-Ruelle-
BowensSRBd measuref2,4g to calculate the probabilities of
trajectory segments predict that the quantity obeying the FF
is the PSCR and further nontrivial theoretical efforts are
needed to establish similar results for the EPR fluctuations
f17g.

The main purpose of examining the Nosé-HooversNHd
thermostated PLG is to investigate which of the above-
mentioned physical quantities obey the FF in a system,
where the corresponding PDFs are not identical. In addition
to this, checking the NH thermostated PLG numerically
against the FF is in itself an important task, given that the
NH thermostat is one of the two generally used dynamical
thermostats; the transport properties of this model have been
recently investigated inf18g. In Sec. II we describe the ex-
amined model; in Sec. III we present our numerical results;
and in Sec. IV we summarize our conclusions.

II. THE SYSTEM

One of the most investigated models suitable for studying
transport phenomena is the field-driven thermostated peri-
odic Lorentz Gas. This model consists of a charged particle
subjected to external electric field and moving in the lattice
of elastic scatterers. Due to the applied electric field, one
must use a thermostating mechanism to achieve a steady
state in the system; such a tool is a dynamical thermostat.
Two types of dynamical thermostats have been applied to the
PLG up to now: the GIK thermostat producing microcanoni-
cal distributionf19g and the Nosé-Hoover thermostat produc-
ing canonical distribution in equilibriumf18,20g.

We present the equations of motion of the two-
dimensional NH thermostated PLG in dimensionless form:
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mass and electric charge are measured in units of the parti-
cle’s massm and chargeq and the unit length is chosen to be
the radius of the scattererssR=1d. Let q=sq1,q2d denote the
position andp=sp1,p2d the momentum of the particle. Then
the phase-space vector of the system isG=sq,p,zd, wherez
is the state variable of the thermal reservoir. Between two
subsequent collisions the state of the system is evolved
smoothly by the differential equation

q̇ = p,

ṗ = E − zp,

ż =
1

tresp
2 S p2

2T
− 1D , s2d

and is transformed abruptly at every elastic collision. In this
equationE is the external electric field,tresp is the response
time of the reservoir, andT is the temperature satisfying
kp2l=2T.

In the simulations presented in this paper we have used a
square latticeof circular scatterers, however, we have inves-
tigated numerically other lattices as wellse.g., triangulard,
but have not found any relevant differences concerning the
results presented in Sec. III.

Energy dissipation can be measured by the phase-space
contraction rates and can be computed by taking the diver-
gence of the right-hand side of Eq.s2d as

sstd = − div Ġstd = zstd. s3d

The entropy production ratej can be formally defined by the
expression of irreversible thermodynamics

jstd =
Jstd ·E

T
=

pstd ·E

T
, s4d

whereT is the kinetic temperature. We note that this quantity
is identical to the dissipation function of the Evans-Searles
theoremf1g. It can be shown that in this modelksl=kjl,
however, the identitysstd=jstd does not hold at all times, as

opposed to the case of the GIK thermostated PLG.

III. NUMERICAL RESULTS

The objective of the numerical simulation is to measure
the PDFsStsxd and Jtsxd of the averaged quantitiesststd
=1/te−t/2

t/2 zst8ddt8 and jtstd=1/te−t/2
t/2 fpst+ t8d ·E /Tgdt8, and

check the validity of the FF for them. In order to perform this
task we should evolve the state of the systemG along a long
trajectory, which requires the algorithm to be very efficient.
This need motivated us to implement anevent driven algo-
rithm that generates and handles events, such as the collision
of the particle with a scatterer and the replacement of the
particle from one simulation cell into the other. The most
sensitive issue when applying such an algorithm is to deter-
mine the point of time when a specific event occurs; in com-
puter science this problem is known ascollision detection.
Since in the case of the Nosé-Hoover thermostat the velocity
of the particle is not upper bounded, we could not have cho-
sen the simplest such method, the so-called naive algorithm,
which could have been applied in the case of the GIK ther-
mostat. Instead of this we have applied the method of build-
ing the time estimation into the Runge-Kutta integrator,
which is used in simulating particle laden flows and coupled
particle-field systemsssee Ref.f21gd.

The PDFsStsxd and Jtsxd were constructed by periodi-
cally computing the quantityststd and jtstd along a long
particle trajectory and making a histogram of the computed
data. In building the histogram we have used overlapping
and nonoverlapping windows techniques as well, but have
not found any relevant differences between them concerning
the results of this paper. Throughout the presented numerical
experiments we have used theT=1.0 andtresp=1.0 values,
however we have tested several other configurations as well.
We have simulatedt=107 long particle trajectories resulting
in approximately 23106 collisions with the scatterers.

Figures 1–4 show the functional form of the PDFsStsxd
andJtsxd for small and large external fields. Examining the
figures one can make the following interesting observations:

FIG. 1. The probability density functionStsxd of the averaged
phase-space contraction rate fluctuationsst in a configuration close
to equilibrium fE=s0.1,0.2dg.

FIG. 2. The probability density functionJtsxd of the averaged
entropy production rate fluctuationsjt in a configuration close to
equilibrium fE=s0.1,0.2dg.
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s1d For low uEu valuessclose to equilibriumd in Figs. 1
and 2 the PDFStsxd seems to be more symmetric than the
PDF Jtsxd.

s2d For low uEu values in Figs. 1 and 2 the PDFJtsxd
seems strictly narrower thanStsxd; indeed in theuEu→0
limit Jtsxd should converge to a Diracd function fjtstd=0g,
opposed tost that can fluctuate even in equilibrium.

s3d For hight values in Figs. 1–4 the curves seem to be
indistinguishable from a Gaussian; indeed fitting a Gaussian
onto the measured values yields an excellent visual
agreement.

With the measured values ofStsxd and Jtsxd one can
check the FF in this model. In order to visualize the FF we
may introduce the quantities

Dt
ssxd =

1

t
ln

Stsxd
Sts− xd

, s5d

Dt
jsxd =

1

t
ln

Jtsxd
Jts− xd

, s6d

which are shown on Figs. 5–8. With these quantities Eq.s1d
reads as limt→`Dt

ssxd=x and limt→`Dt
jsxd=x. Examining

Figs. 5–8, one can conclude that
s1d for small external forcings and for numerically avail-

ablet values thest fluctuations seem to violate the FFsFig.
5d; this observation is supported by the fact that any symmet-
ric function substituted in Eq.s5d yields zero, and due to the
time-reversing symmetry of Eq.s2d the PDF Stsxd is ex-
pected to be close to a symmetric function for small external
forcings ssee Ref.f22gd.

s2d Thejt fluctuations seem to obey the FF both for small
and large external forcings.

s3d As the external forcing grows, thest fluctuations
seem to obey the FF for larget valuessFig. 7d similarly to jt

fluctuations.
We note that we have examined several other configura-

tions and have found no significant qualitative differences in
the observed behavior of the PDFs.

FIG. 3. The probability density functionStsxd of the averaged
phase-space contraction rate fluctuationsst in a configuration far
from equilibrium fE=s0.8,1.6dg.

FIG. 4. The probability density functionJtsxd of the averaged
entropy production rate fluctuationsjt in a configuration far from
equilibrium fE=s0.8,1.6dg.

FIG. 5. The quantityDt
ssxd for the phase-space contraction rate

in a configuration close to equilibriumfE=s0.1,0.2dg.

FIG. 6. The quantityDt
jsxd for the entropy production rate in a

configuration close to equilibriumfE=s0.1,0.2dg.
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IV. CONCLUSION

In this paper we have presented numerical evidence show-
ing that the phase-space contraction rate fluctuations violate
the fluctuation formulafEq. s1dg in or close to equilibrium in
the Nosé-Hoover thermostated periodic Lorentz gas. This ob-
servation is completely in line with the theoretical predic-
tions of Evanset al., in Ref. f22g.

On the other hand, we also demonstrated that the entropy
production rate fluctuations satisfy the fluctuation formula,
which is by no means trivial. It should also be noted that
from the physical point of view, the entropy production rate
is the more relevant quantity due to its relation to thermody-
namics and the availability for measurement in physical ex-

periments. A direct consequence of our result is that the
phase-space contraction rate and entropy production rate
cannot be treated as interchangeable quantities in fluctuation
formulas, therefore statements regarding the applicability of
the FF for various models should always clarify which fluc-
tuations they refer to.
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